Read The Eloquent Atheist Webzine

Infidels, Freethinkers, Humanists, and Unbelievers
Einstein, Professor Albert (1879-1955 )

I cannot imagine a God who rewards and punishes the objects of his creation, whose purposes are modeled after our own -- a God, in short, who is but a reflection of human frailty. Neither can I believe that the individual survives the death of his body, although feeble souls harbor such thoughts through fear or ridiculous egotisms."

"I believe in Spinoza's God who reveals himself in the orderly harmony of what exists, not in a God who concerns himself with the fates and actions of human beings."

"Strange is our situation here on Earth. Each of us comes for a short visit, not knowing why, yet sometimes seeming to divine a purpose. From the standpoint of daily life, however, there is one thing we do know: that man is here for the sake of other men -- above all for those upon whose smiles and well-being our own happiness depends."

-- Albert Einstein


Albert Einstein was a German-born theoretical physicist widely regarded as the greatest scientist of the 20th century. He was the author of the general theory of relativity and made important contributions to the special theory of relativity, quantum mechanics, statistical mechanics, and cosmology. He was awarded the 1921 Nobel Prize for Physics for his explanation of the photoelectric effect in 1905 (his "miracle year") and "for his services to Theoretical Physics."

After British solar eclipse expeditions in 1919 confirmed that light rays from distant stars were deflected by the gravity of the sun in the exact amount he predicted in his generalized theory of relativity, Einstein became world-famous, an unusual achievement for a scientist. In his later years, his fame perhaps exceeded that of any other scientist in history. In popular culture, his name has become synonymous with great intelligence and genius.

Youth and college
Einstein was born on March 14, 1879 at Ulm in Baden-Württemberg, German Empire, about 100 km east of Stuttgart. His parents were Hermann Einstein, a featherbed salesman who later ran an electrochemical works, and Pauline, whose maiden name was Koch. They were married in Stuttgart-Bad Cannstatt. The family was Jewish (non-observant); Albert attended a Catholic elementary school and, at the insistence of his mother, was given violin lessons. Though he initially disliked (and eventually discontinued) the lessons, he would later take great solace in Mozart's violin sonatas.

When Albert was five, his father showed him a pocket compass, and Einstein realized that something in "empty" space acted upon the needle; he would later describe the experience as one of the most revelatory of his life. Though he built models and mechanical devices for fun and showed great mathematical faculty early on, he was considered a slow learner, possibly due to dyslexia, simple shyness, or the significantly rare and unusual structure of his brain (examined after his death).1 He later credited his development of the theory of relativity to this slowness, saying that by pondering space and time later than most children, he was able to apply a more developed intellect. Some researchers have speculated that Einstein may have exhibited some traits of mild forms of autism, although they concede that a reliable posthumous diagnosis is impossible.2

In 1889, a student named Max Talmud introduced Einstein to key science and philosophy texts including Kant's Critique of Pure Reason. Two of his uncles would further foster his intellectual interests during his late childhood and early adolescence by suggesting and providing books on science, mathematics and philosophy.

Einstein attended the Luitpold Gymnasium where he received a relatively progressive education. He began to learn mathematics around age twelve: in 1891, he taught himself Euclidean plane geometry from a school booklet and began to study calculus. There is a recurring rumor that he failed mathematics later in his education, but this is untrue; a change in the way grades were assigned caused confusion years later. While there, he clashed with authority and resented the school regimen, believing the spirit of learning and creative thought were lost in such an endeavor as strict memorization.

In 1894, following the failure of Hermann's electrochemical business, the Einsteins moved from Munich to Pavia, Italy (near Milan). Einstein's first scientific work was written contemporaneously (called "The Investigation of the State of Aether in Magnetic Fields"). Albert remained behind in Munich lodgings to finish school, completing only one term before leaving the gymnasium in spring 1895 to rejoin his family in Pavia.

He quit without telling his parents and a year and a half prior to final examinations, Einstein convinced the school to let him go with a medical note from a friendly doctor, but this meant he had no secondary-school certificate.3 That year, at the age of 16, he performed the thought experiment known as Albert Einstein's mirror. After gazing into a mirror, he examined what would happen to his image if he were moving at the speed of light; his conclusion that the speed of light is independent of the observer would later become one of the two postulates of special relativity.

Despite excelling in the mathematics and science portion, his failure of the liberal arts portion of the Eidgenössische Technische Hochschule (ETH, Swiss Federal Institute of Technology, in Zurich) entrance exam the following year was a setback; his family sent him to Aarau, Switzerland, to finish secondary school, where he studied the seldom-taught Maxwell's electromagnetic theory and received his diploma in September 1896. During this time he lodged with Professor Jost Winteler's family and became enamoured with Marie, their daughter, his first sweetheart.

Albert's sister Maja, perhaps his closest confidant, was to later marry their son Paul, and his friend Michele Besso married their other daughter Anna.4 Einstein subsequently enrolled at the Eidgenössische Technische Hochschule in October and moved to Zurich, while Marie moved to Olsberg for a teaching post. The same year, he renounced his Württemberg citizenship and became stateless.

In the spring of 1896, the Serbian Mileva Maric started initially as a medical student at the University of Zurich, but after a term switched to the same section as Einstein as the only woman that year to study for the same diploma. Einstein's relationship with Mileva developed into romance over the next few years.

In 1900, he was granted a teaching diploma by the Eidgenössische Technische Hochschule (ETH Zurich). Einstein then wrote his first published paper on the capillary forces of a drinking straw, wherein he tried to unify the laws of physics, an attempt he would continually make throughout his life. (It was titled "Folgerungen aus den Capillaritätserscheinungen," which translated is "Consequences of the observations of capillarity phenomena," found in "Annalen der Physik" volume 4, page 513.) Shortly thereafter, Einstein was accepted as a Swiss citizen in 1901; he kept his Swiss passport for his whole life.

Through his friend Michelle Besso, an engineer, he was presented with the works of Ernst Mach and later would consider him "the best sounding board in Europe" for physical ideas. During this time Einstein discussed his scientific interests with a group of close friends, including Besso and Mileva. The men referred to themselves as the "Olympia Academy." He and Mileva had a daughter born out of wedlock, Lieserl, born in January 1902. Her fate is unknown; some believe she died in infancy, while others believe she was given out for adoption.

Work and doctorate
Einstein in 1905, when he wrote the "Annus Mirabilis Papers"Upon graduation, Einstein could not find a teaching post, mostly because his brashness as a young man had apparently irritated most of his professors. The father of a classmate helped him obtain employment as a technical assistant examiner at the Swiss Patent Office5 in 1902. There, Einstein judged the worth of inventors' patent applications for devices that required a knowledge of physics to understand — in particular he was chiefly charged to evaluate patents relating to electromagnetic devices.6 He also learned how to discern the essence of applications despite sometimes poor descriptions, and was taught by the director how "to express [him]self correctly". He occasionally rectified their design errors while evaluating the practicality of their work.

Einstein married Mileva Maric on January 6, 1903. Einstein's marriage to Maric, who was a mathematician, was both a personal and intellectual partnership: Einstein referred to Mileva as "a creature who is my equal and who is as strong and independent as I am". Ronald W. Clark, a biographer of Einstein, claimed that Einstein depended on the distance that existed in his and Mileva's marriage in order to have the solitude necessary to accomplish his work; he required intellectual isolation.

Abram Joffe, a Soviet physicist who knew Einstein, in an obituary of Einstein, wrote, "The author of [the papers of 1905] was ... a bureaucrat at the Patent Office in Bern, Einstein-Maric" and this has recently been taken as evidence of a collaborative relationship. However, according to Alberto A. Martínez of the Center for Einstein Studies at Boston University, Joffe only ascribed authorship to Einstein, as he believed that it was a Swiss custom at the time to append the spouse's last name to the husband's name.7 Whatever the truth, the extent of her influence on Einstein's work is a highly controversial and debated question.

In 1903, Einstein's position at the Swiss Patent Office had been made permanent, though he was passed over for promotion until he had "fully mastered machine technology". He obtained his doctorate after submitting his thesis "A new determination of molecular dimensions" ("Eine neue Bestimmung der Moleküldimensionen") in 1905.

That same year, he wrote four articles that participated in the foundation of modern physics, without much scientific literature to which he could refer or many scientific colleagues with whom he could discuss the theories. Most physicists agree that three of those papers (on Brownian motion, the photoelectric effect, and special relativity) deserved Nobel Prizes. Only the paper on the photoelectric effect would be mentioned by the Nobel committee in the award.

This is ironic, not only because Einstein is far better-known for relativity, but also because the photoelectric effect is a quantum phenomenon, and Einstein became somewhat disenchanted with the path quantum theory would take. In each of these papers, Einstein boldly took an idea from theoretical physics to its logical consequences and explained experimental results that had baffled scientists for decades.

Annus Mirabilis Papers
Einstein submitted the series of papers to the "Annalen der Physik". They are commonly referred to as the "Annus Mirabilis Papers" (from Annus mirabilis, Latin for 'year of wonders'). The International Union of Pure and Applied Physics (IUPAP) commemorated the 100th year of the publication of Einstein's extensive work in 1905 as the 'World Year of Physics 2005'.

The first paper, named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light", ("Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt") proposed that "energy quanta" (which are essentially what we now call photons) were real, and showed how they could be used to explain such phenomena as the photoelectric effect. This paper was specifically cited for his Nobel Prize. Max Planck had made the formal assumption that energy was quantized in deriving his black-body radiation law, published in 1901, but had considered this to be no more than a mathematical trick. The photoelectric effect thus provided a simple confirmation of Max Planck's hypothesis of quanta.

His second article in 1905, named "On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid", ("Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen") covered his study of Brownian motion, and provided empirical evidence for the existence of atoms.

Before this paper, atoms were recognized as a useful concept, but physicists and chemists hotly debated whether atoms were real entities. Einstein's statistical discussion of atomic behavior gave experimentalists a way to count atoms by looking through an ordinary microscope. Wilhelm Ostwald, one of the leaders of the anti-atom school, later told Arnold Sommerfeld that he had been converted to a belief in atoms by Einstein's complete explanation of Brownian motion. At the same time as Einstein, Brownian motion was also described by Smoluchowski.

Einstein's third paper that year, "On the Electrodynamics of Moving Bodies" ("Zur Elektrodynamik bewegter Körper"), was published in September 1905. This paper introduced the special theory of relativity, a theory of time, distance, mass and energy which was consistent with electromagnetism, but omitted the force of gravity. While developing this paper, Einstein wrote to Mileva about "our work on relative motion", and this has led some to ask whether Mileva played a part in its development.

A few historians of science believe that Einstein and his wife were both aware that the famous Frenchman Henri Poincaré had already published the equations of Relativity, a few weeks before Einstein submitted his paper; most believe their work was independent, especially given Einstein's isolation at this time. Similarly, it's debatable if he knew the 1904 paper of Lorentz which contained most of the theory and to which Poincaré referred.

In a fourth paper, "Does the Inertia of a Body Depend Upon Its Energy Content?", ("Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?"), published late in 1905, he showed that from relativity's axioms, it is possible to deduce the famous equation that the energy of a body at rest (E) equals its mass (m) times the speed of light (c) squared: E = mc². He was the first to present that equation together with the interpretation that mass is a measure for energy content.

Middle years
In 1906, Einstein was promoted to technical examiner second class. In 1908, Einstein was licensed in Bern, Switzerland, as a Privatdozent (unsalaried teacher at a university). During this time, Einstein described why the sky is blue in his paper on the phenomenon of critical opalescence, which shows the cumulative effect of scattering of light by individual molecules in the atmosphere. In 1911, Einstein became first associate professor at the University of Zurich, and shortly afterwards full professor at the (German) University of Prague, only to return the following year to Zurich in order to become full professor at the ETH Zurich. At that time, he worked closely with the mathematician Marcel Grossmann. In 1912, Einstein started to refer to time as the fourth dimension (although H.G. Wells had done this earlier, in 1895 in The Time Machine).

In 1914, just before the start of World War I, Einstein settled in Berlin as professor at the local university and became a member of the Prussian Academy of Sciences. He took German citizenship. His pacifism and Jewish origins irritated German nationalists. After he became world-famous, nationalistic hatred of him grew and for the first time he was the subject of an organized campaign to discredit his theories. From 1914 to 1933, he served as director of the Kaiser Wilhelm Institute for Physics in Berlin, and it was during this time that he was awarded his Nobel Prize and made his most groundbreaking discoveries. He was also an extraordinary professor at the Leiden University from 1920 until officially 1946, where he regularly gave guest lectures.

In 1917, Einstein published "On the Quantum Mechanics of Radiation" ("Zur Quantenmechanik der Strahlung", Physkalische Zeitschrift 18, 121-128). This article introduced the concept of stimulated emission, the physical principle that allows light amplification in the laser. He also published a paper that year that used the general theory of relativity to model the behavior of the entire universe, setting the stage for modern cosmology. In this work he created his self-described "worst blunder", the cosmological constant.

On May 14, 1904, Albert and Mileva's first son, Hans Albert Einstein, was born. Their second son, Eduard Einstein, was born on July 28, 1910. Hans Albert became a professor of hydraulic engineering at the University of California, Berkeley, having little interaction with his father. Eduard, the younger brother, intended to practice as a Freudian analyst but was institutionalized for schizophrenia and died in an asylum.

Einstein divorced Mileva on February 14, 1919, and married his cousin Elsa Löwenthal (born Einstein: Löwenthal was the surname of her first husband, Max) on June 2, 1919. Elsa was Albert's first cousin (maternally) and his second cousin (paternally). She was three years older than Albert, and had nursed him to health after he had suffered a partial nervous breakdown combined with a severe stomach ailment; there were no children from this marriage.

General relativity
In November 1915, Einstein presented a series of lectures before the Prussian Academy of Sciences in which he described his theory of gravity, known as general relativity. The final lecture climaxed with his introduction of an equation that replaced Newton's law of gravity, the Field Equation.9 This theory considered all observers to be equivalent, not only those moving at a uniform speed. In general relativity, gravity is no longer a force (as it is in Newton's law of gravity) but is a consequence of the curvature of space-time.

The theory provided the foundation for the study of cosmology and gave scientists the tools for understanding many features of the universe that were discovered well after Einstein's death. A truly revolutionary theory, general relativity has so far passed every test posed to it and has become a powerful tool used in the analysis of many subjects in physics.

Initially, scientists were skeptical because the theory was derived by mathematical reasoning and rational analysis, not by experiment or observation. But in 1919, predictions made using the theory were confirmed by Arthur Eddington's measurements (during a solar eclipse), of how much the light emanating from a star was bent by the Sun's gravity when it passed close to the Sun, an effect called gravitational lensing. The observations were carried out on May 29, 1919, at two locations, one in Sobral, Ceará, Brazil, and another in the island of Principe, in the west coast of Africa. On November 7, The Times reported the confirmation, cementing Einstein's fame.

Many scientists were still unconvinced for various reasons ranging from disagreement with Einstein's interpretation of the experiments, to not being able to tolerate the absence of an absolute frame of reference. In Einstein's view, many of them simply could not understand the mathematics involved[citation needed]. Einstein's public fame which followed the 1919 article created resentment among these scientists some of which lasted well into the 1930s.

In the early 1920s Einstein was the lead figure in a famous weekly physics colloquium at the University of Berlin. On March 30, 1921, Einstein went to New York to give a lecture on his new Theory of Relativity, the same year he was awarded the Nobel Prize. Though he is now most famous for his work on relativity, it was for his earlier work on the photoelectric effect that he was given the Prize, as his work on general relativity was still disputed. The Nobel committee decided that citing his less-contested theory in the Prize would gain more acceptance from the scientific community.

The "Copenhagen" interpretation
Einstein and Niels Bohr sparred over quantum theory during the 1920s.Einstein's postulation that light can be described not only as a wave with no kinetic energy, but also as massless discrete packets of energy called quanta with measurable kinetic energy (now known as photons) was a landmark break with the classical physics. In 1909 Einstein presented his first paper on the quantification of light to a gathering of physicists and told them that they must find some way to understand waves and particles together.

In the mid-1920s, as the original quantum theory was replaced with a new theory of quantum mechanics, Einstein balked at the Copenhagen interpretation of the new equations either because it settled for a probabilistic, non-visualizable account of physical behaviour, or because it described matter as being in necessarily contradictory states. However, Einstein agreed that the theory was the best available[citation needed], but he looked for a more "complete" explanation, i.e., either more deterministic or one that could more fundamentally explain the reason for probabilities in a logical way. He could not abandon the belief that physics described the laws that govern "real things", nor could he abandon the belief that there is no such thing as a contradiction, which had driven him to his successes explaining photons, relativity, atoms, and gravity.

In a 1926 letter to Max Born, Einstein made a remark that is now famous: “Quantum mechanics is certainly imposing. But an inner voice tells me it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the Old One. I, at any rate, am convinced that He does not throw dice.

To this, Bohr, who sparred with Einstein on quantum theory, retorted, "Stop telling God what He must do!" The Bohr-Einstein debates on foundational aspects of quantum mechanics happened during the Solvay conferences.

Einstein was not rejecting probabilistic theories per se. Einstein himself was a great statistician, using statistical analysis in his works on Brownian motion and photoelectricity and in papers published before the miraculous year 1905; Einstein had even discovered Gibbs ensembles. He believed, however, that at the core reality behaved deterministically. Many physicists argue that experimental evidence contradicting this belief was found much later with the discovery of Bell's Theorem and Bell's inequality. Nonetheless, there is still space for lively discussions about the interpretation of quantum mechanics.

Bose-Einstein statistics
In 1924, Einstein received a short paper from a young Indian physicist named Satyendra Nath Bose describing light as a gas of photons and asking for Einstein's assistance in publication. Einstein realized that the same statistics could be applied to atoms, and published an article in German (then the lingua franca of physics) which described Bose's model and explained its implications.

Bose-Einstein statistics now describe any assembly of these indistinguishable particles known as bosons. The Bose-Einstein condensate phenomenon was predicted in the 1920s by Bose and Einstein, based on Bose's work on the statistical mechanics of photons, which was then formalized and generalized by Einstein. The first such condensate was produced by Eric Cornell and Carl Wieman in 1995 at the University of Colorado at Boulder. Einstein's original sketches on this theory were recovered in August 2005 in the library of Leiden University.10

Einstein also assisted Erwin Schrödinger in the development of the quantum Boltzmann distribution, a mixed classical and quantum mechanical gas model although he realized that this was less significant than the Bose-Einstein model and declined to have his name included on the paper.

The Einstein refrigerator
Einstein and former student Leó Szilárd co-invented a unique type of refrigerator (usually called the Einstein refrigerator) in 1926.11 On November 11, 1930, U.S. Patent 1,781,541 was awarded to Albert Einstein and Leó Szilárd. The patent covered a thermodynamic refrigeration cycle providing cooling with no moving parts, at a constant pressure, with only heat as an input. The refrigeration cycle used ammonia, butane, and water.

World War II
When Adolf Hitler came to power in January 1933, Einstein was a guest professor at Princeton University, a position which he took in December 1932, after an invitation from the American educator, Abraham Flexner. In 1933, the Nazis passed "The Law of the Restoration of the Civil Service" which forced all Jewish university professors out of their jobs, and throughout the 1930s a campaign to label Einstein's work as "Jewish physics"—in contrast with "German" or "Aryan physics"—was led by Nobel laureates Philipp Lenard and Johannes Stark.

With the assistance of the SS, the Deutsche Physik supporters worked to publish pamphlets and textbooks denigrating Einstein's theories and attempted to politically blacklist German physicists who taught them, notably Werner Heisenberg. Einstein renounced his German citizenship and stayed in the United States, where he was given permanent residency. He accepted a position at the newly founded Institute for Advanced Study in Princeton Township, New Jersey. He became an American citizen in 1940, though he still retained Swiss citizenship.

In 1939, under the encouragement of Szilárd, Einstein sent a letter to President Franklin Delano Roosevelt urging the study of nuclear fission for military purposes, under fears that the Nazi government would be first to develop atomic weapons. Roosevelt started a small investigation into the matter which eventually became the massive Manhattan Project. Einstein himself did not work on the bomb project, however.

The International Rescue Committee was founded in 1933 at the request of Albert Einstein to assist opponents of Adolf Hitler.

Institute for Advanced Study
His work at the Institute for Advanced Study focused on the unification of the laws of physics, which he referred to as the Unified Field Theory. He attempted to construct a model which would describe all of the fundamental forces as different manifestations of a single force. This took the form of an attempt to unify the gravitational and electrodynamic forces, but was hindered because the strong and weak nuclear forces were not understood independently until around 1970, fifteen years after Einstein's death. Einstein's goal of unifying the laws of physics under a single model survives in the current drive for unification of the forces, embodied most notably by string theory.

Generalized theory
Einstein began to form a generalized theory of gravitation with the Universal Law of Gravitation and the electromagnetic force in his first attempt to demonstrate the unification and simplification of the fundamental forces. In 1950 he described his work in a Scientific American article. Einstein was guided by a belief in a single statistical measure of variance for the entire set of physical laws.

Einstein's Generalized Theory of Gravitation is a universal mathematical approach to field theory. He investigated reducing the different phenomena by the process of logic to something already known or evident. Einstein tried to unify gravity and electromagnetism in a way that also led to a new subtle understanding of quantum mechanics.

Einstein postulated a four-dimensional space-time continuum expressed in axioms represented by five component vectors. Particles appear in his research as a limited region in space in which the field strength or the energy density are particularly high. Einstein treated subatomic particles as objects embedded in the unified field, influencing it and existing as an essential constituent of the unified field but not of it. Einstein also investigated a natural generalization of symmetrical tensor fields, treating the combination of two parts of the field as being a natural procedure of the total field and not the symmetrical and antisymmetrical parts separately. He researched a way to delineate the equations and systems to be derived from a variational principle.

Einstein became increasingly isolated in his research on a generalised theory of gravitation and was ultimately unsuccessful in his attempts. In particular, his pursuit of a unification of the fundamental forces ignored work in the physics community at large, most notably the discovery of the strong nuclear force and weak nuclear force.

Final years
In 1948, Einstein served on the original committee which resulted in the founding of Brandeis University. A portrait of Einstein was taken by Yousuf Karsh on February 11 of that same year. In 1952, the Israeli government proposed to Einstein that he take the post of second president. He declined the offer, and is believed to be the only United States citizen ever to have been offered a position as a foreign head of state. On March 30, 1953, Einstein released a revised unified field theory.

He died at 1:15 AM in Princeton hospital in Princeton, New Jersey, on April 18, 1955 at the age of 76 from internal bleeding, which was caused by the rupture of an aortic aneurism, leaving the Generalized Theory of Gravitation unsolved. The only person present at his deathbed, a hospital nurse, said that just before his death he mumbled several words in German that she did not understand. He was cremated without ceremony on the same day he died at Trenton, New Jersey, in accordance with his wishes. His ashes were scattered at an undisclosed location.

An autopsy was performed on Einstein by Dr. Thomas Stoltz Harvey, who removed and preserved his brain. Harvey found nothing unusual with his brain, but in 1999 further analysis by a team at McMaster University revealed that his parietal operculum region was missing and, to compensate, his inferior parietal lobe was 15% wider than normal. The inferior parietal region is responsible for mathematical thought, visuospatial cognition, and imagery of movement. Einstein's brain also contained 73% more glial cells than the average brain.

Personality
Albert Einstein appeared outwardly jovial and animated and was known for his aphorisms and doggerel, evidenced by the several editions of The Quotable Einstein. He possessed a shaggy-haired visage, a moustache and "a haloe of unruly white hair," in his later years, and was said to have a piercing gaze. He minimized his wardrobe, so he would not waste time on deciding what to wear. Einstein draped himself in mothy sweaters and baggy pants held up by suspenders, and stopped wearing socks, since his big toes poked holes in them.

He enjoyed sailing, playing the violin, and listening to Beethoven, Bach, Mozart and Schubert. Albert indulged his appetite for heavy German cooking. He would leisurely walk to work with a friend and colleague, whether it was the Bern patent office or the Institute for Advanced Study (with Michelle Besso and Kurt Gödel, respectively). The absent-minded professor had the ability to focus on a problem years on end, and like Newton faced his "intellectual demons."

Religious views
Einstein's writings on religion are frequently associated with pantheism, an areligious spirituality that regards the natural world as definitionally equivalent to God, and deism, a natural religion that has become identified with the belief that God created the universe but does not intervene in the world. Although he was raised Jewish, he was not a believer in the religious aspect of Judaism, though he still considered himself an ethnic Jew.

From a letter written in English, dated March 24, 1954, Einstein wrote, "It was, of course, a lie what you read about my religious convictions, a lie which is being systematically repeated. I do not believe in a personal God and I have never denied this but have expressed it clearly. If something is in me which can be called religious then it is the unbounded admiration for the structure of the world so far as our science can reveal it."

He also said (in an essay reprinted in Living Philosophies, vol. 13, 1931): "A knowledge of the existence of something we cannot penetrate, our perceptions of the profoundest reason and the most radiant beauty, which only in their most primitive forms are accessible to our minds—it is this knowledge and this emotion that constitute true religiosity; in this sense, and this [sense] alone, I am a deeply religious man."

The following is a response made to Rabbi Herbert Goldstein of the International Synagogue in New York which read, "I believe in Spinoza's God who reveals himself in the orderly harmony of what exists, not in a God who concerns himself with the fates and actions of human beings." After being pressed on his religious views by Martin Buber, Einstein exclaimed, "What we [physicists] strive for is just to draw His lines after Him." He also quoted once "When I read the Bhagavad Gita, I ask myself how God created the universe. Everything else seems superfluous." Summarizing his religious beliefs, he once said: "My religion consists of a humble admiration of the illimitable superior spirit who reveals himself in the slight details we are able to perceive with our frail and feeble mind."

Einstein was an Honorary Associate of the Rationalist Press Association beginning in 1934, and was an admirer of Ethical Culture.

Political views
Einstein and Solomon Mikhoels, the chairman of the Soviet Jewish Anti-Fascist Committee, in 1943.Einstein considered himself a pacifist and humanitarian,15 and in later years, a committed democratic socialist. He once said, "I believe Gandhi's views were the most enlightened of all the political men of our time. We should strive to do things in his spirit: not to use violence for fighting for our cause, but by non-participation of anything you believe is evil." Einstein's views on other issues, including socialism, McCarthyism and racism, were controversial.

In a 1949 article entitled "Why Socialism?", Albert Einstein described the "predatory phase of human development", exemplified by a chaotic capitalist society, as a source of evil to be overcome. He disapproved of the totalitarian regimes in the Soviet Union and elsewhere, and argued in favor of a democratic socialist system which would combine a planned economy with a deep respect for human rights. Einstein was a co-founder of the liberal German Democratic Party and a member of the AFL-CIO-affiliated union the American Federation of Teachers.

Einstein was very much involved in the Civil Rights movement. He was a close friend of Paul Robeson for over 20 years. Einstein was a member of several civil rights groups (including the Princeton chapter of the NAACP) many of which were headed by Paul Robeson. He served as co-chair with Paul Robeson of the American Crusade to End Lynching. When W.E.B. DuBois was frivolously charged with being a communist spy during the McCarthy era while he was in his 80s, Einstein volunteered as a character witness in the case. The case was dismissed shortly after it was announced that he was to appear in that capacity. Einstein was quoted as saying that "racism is America's greatest disease".

The U.S. FBI kept a 1,427 page file on his activities and recommended that he be barred from immigrating to the United States under the Alien Exclusion Act, alleging that Einstein "believes in, advises, advocates, or teaches a doctrine which, in a legal sense, as held by the courts in other cases, 'would allow anarchy to stalk in unmolested' and result in 'government in name only'", among other charges. They also alleged that Einstein "was a member, sponsor, or affiliated with thirty-four communist fronts between 1937-1954" and "also served as honorary chairman for three communist organizations".17 It should be noted that many of the documents in the file were submitted to the FBI, mainly by civilian political groups, and not actually written by FBI officials.

In 1939, Einstein signed a letter, written by Leó Szilárd, to President Roosevelt arguing that the United States should start funding research into the development of nuclear weapons.Einstein opposed tyrannical forms of government, and for this reason (and his Jewish background), opposed the Nazi regime and fled Germany shortly after it came to power. At the same time, Einstein's anarchist nephew Carl Einstein, who shared many of his views, was fighting the fascists in the Spanish Civil War.

Einstein initially favored construction of the atomic bomb, in order to ensure that Hitler did not do so first, and even sent a letter18 to President Roosevelt (dated August 2, 1939, before World War II broke out, and probably written by Leó Szilárd) encouraging him to initiate a program to create a nuclear weapon. Roosevelt responded to this by setting up a committee for the investigation of using uranium as a weapon, which in a few years was superseded by the Manhattan Project.

After the war, though, Einstein lobbied for nuclear disarmament and a world government: "I do not know how the Third World War will be fought, but I can tell you what they will use in the Fourth—rocks!"

Einstein was a supporter of Zionism. He supported Jewish settlement of the ancient seat of Judaism and was active in the establishment of the Hebrew University in Jerusalem, which published (1930) a volume titled About Zionism: Speeches and Lectures by Professor Albert Einstein, and to which Einstein bequeathed his papers. However, he opposed nationalism and expressed skepticism about whether a Jewish nation-state was the best solution.

He may have imagined Jews and Arabs living peacefully in the same land. In later life, in 1952, he was offered the post ofsecond president of the newly created state of Israel, but declined the offer, claiming that he lacked the necessary people skills. Einstein was disturbed by the violence taking place in the Palestine after the Second World War and expressed that he was disappointed with the Jewish Ultra-Nationalist Organization (Irgun and Stern Gang). Nonetheless, Einstein remained deeply committed to the welfare of Israel and the Jewish people for the rest of his life.

Einstein, along with Albert Schweitzer and Bertrand Russell, fought against nuclear tests and bombs. As his last public act, and just days before his death, he signed the Russell-Einstein Manifesto, which led to the Pugwash Conferences on Science and World Affairs. His letter to Russell read:

Dear Bertrand Russell,
Thank you for your letter of April 5. I am gladly willing to sign your excellent statement. I also agree with your choice of the prospective signers.
With kind regards, A. Einstein

Nationality: German, Swiss or American?
Einstein was born a German citizen. At the age of seventeen, on January 28, 1896, he was released from the German citizenship by his own request and with the approval of his father. He remained stateless for five years. On February 21, 1901 he gained Swiss citizenship, which he never revoked. Einstein regained German citizenship in April 1914 when he entered German civil service, but due to the political situation and the persecution of Jewish people in Nazi Germany, he left civil service in March 1933 and thus also lost the German citizenship. On October 1, 1940, Einstein became an American citizen. He remained both an American and a Swiss citizen until his death on April 18, 1955.

Popularity and cultural impact
Einstein's popularity has led to widespread use of Einstein in advertising and merchandising, including the registration of "Albert Einstein" as a trademark.

Entertainment
Albert Einstein has become the subject of a number of novels, films and plays, including Jean-Claude Carrier's 2005 French novel, Einstein S'il Vous Plait (Please Mr Einstein), Nicolas Roeg's film Insignificance, Fred Schepisi's film I.Q., Alan Lightman's novel Einstein's Dreams, and Steve Martin's comedic play "Picasso at the Lapin Agile". He was the subject of Philip Glass's groundbreaking 1976 opera Einstein on the Beach. His humorous side is also the subject of Ed Metzger's one-man play Albert Einstein: The Practical Bohemian.

He is often used as a model for depictions of mad scientists in works of fiction; his own character and distinctive hairstyle suggest eccentricity, or even lunacy and are widely copied or exaggerated. TIME magazine writer Frederic Golden referred to Einstein as "a cartoonist's dream come true."

On Einstein's 72nd birthday in 1951, the UPI photographer Arthur Sasse was trying to coax him into smiling for the camera. Having done this for the photographer many times that day, Einstein stuck out his tongue instead.20 The image has become an icon in pop culture for its contrast of the genius scientist displaying a moment of levity. Yahoo Serious, an Australian film maker, used the photo as an inspiration for the intentionally anachronistic movie Young Einstein.

Licensing
Einstein bequeathed his estate, as well as the use of his image (see personality rights), to the Hebrew University of Jerusalem.21 Einstein actively supported the university during his life and this support continues with the royalties received from licensing activities. The Roger Richman Agency licences the commercial use of the name "Albert Einstein" and associated imagery and likenesses of Einstein, as agent for the Hebrew University of Jerusalem. As head licensee the agency can control commercial usage of Einstein's name which does not comply with certain standards (e.g., when Einstein's name is used as a trademark, the ™ symbol must be used).22 As of May, 2005, the Roger Richman Agency was acquired by Corbis.

Quotes by Einstein:

"If this being is omnipotent, then every occurrence, including every human action, every human thought, and every human feeling and aspiration is also His work; how is it possible to think of holding men responsible for their deeds and thoughts before such an almighty Being? In giving out punishment and rewards He would to a certain extent be passing judgment on Himself. How can this be combined with the goodness and righteousness ascribed to Him?"

"If people are good only because they fear punishment, and hope for reward, then we are a sorry lot indeed. "

"I do not believe in the God of theology who rewards good and punishes evil."

"It has not done so up to now." [Einstein's reply to a reporter's question if religion will promote peace]

"A man's ethical behavior should be based effectually on sympathy, education, and social ties and needs; no religious basis is necessary. Man would indeed be in a poor way if he had to be restrained by fear of punishment and hope of reward after death."

"During the youthful period of mankind's spiritual evolution, human fantasy created gods in man's own image who, by the operations of their will were supposed to determine, or at any rate influence, the phenomenal world... The idea of God in the religions taught at present is a sublimation of that old conception of the gods. Its anthropomorphic character is shown, for instance, by the fact that men appeal to the Divine Being in prayers and plead for the fulfillment of their wishes... In their struggle for the ethical good, teachers of religion must have the stature to give up the doctrine of a personal God, that is, give up that source of fear and hope which in the past placed such vase power in the hands of priests."

"I do not believe in immortality of the individual, and I consider ethics to be an exclusively human concern with no superhuman authority behind it."

"The foundation of morality should not be made dependent on myth nor tied to any authority lest doubt about the myth or about the legitimacy of the authority imperil the foundation of sound judgment and action."

"I cannot conceive of a personal God who would directly influence the actions of individuals, or would directly sit in judgment on creatures of his own creation. I cannot do this in spite of the fact that mechanistic causality has, to a certain extent, been placed in doubt by modern science. [He was speaking of Quantum Mechanics and the breaking down of determinism.] My religiosity consists in a humble admiratation of the infinitely superior spirit that reveals itself in the little that we, with our weak and transitory understanding, can comprehend of reality. Morality is of the highest importance -- but for us, not for God."

"...a doctrine which is able to maintain itself not in clear light but only in the dark, will of necessity lose its effect on mankind, with incalculable harm to human progress. In their struggle for the ethical good, teachers of religion must have the stature to give up the doctrine of a personal God, that is, give up that source of fear and hope which in the past placed such vast power in the hands of priests.... The further the spiritual evolution of mankind advances, the more certain it seems to me that the path to genuine religiosity does not lie through the fear of life, and the fear of death, and blind faith, but through striving after rational knowledge."

"The most beautiful experience we can have is the mysterious. It is the fundamental emotion which stands at the cradle of true art and true science. Whoever does not know it and can no longer wonder, no longer marvel, is as good as dead, and his eyes are dimmed. It was the experience of mystery-- even if mixed with fear -- that engendered religion. A knowledge of the existence of something we cannot penetrate, our perceptions of the profoundest reason and the most radiant beauty, which only in their most primitive forms are accessible to our minds -- it is this knowledge and this emotion that constitute true religiosity; in this sense, and in this alone, I am a deeply religious man."

"The mystical trend of our time, which shows itself particularly in the rampant growth of the so-called Theosophy and Spiritualism, is for me no more than a symptom of weakness and confusion. Since our inner experiences consist of reproductions, and combinations of sensory impressions, the concept of a soul without a body seem to me to be empty and devoid of meaning."

"I cannot conceive of a God who rewards and punishes his creatures, or has a will of the kind that we experience in ourselves. Neither can I nor would I want to conceive of an individual that survives his physical death; let feeble souls, from fear or absurd egoism, cherish such thoughts. I am satisfied with the mystery of the eternity of life and with the awareness and a glimpse of the marvelous structure of the existing world, together with the devoted striving to comprehend a portion, be it ever so tiny, of the Reason that manifests itself in nature."

"A human being is part of a whole, called by us the Universe, a part limited in time and space. He experiences himself, his thoughts and feelings, as something separated from the rest--a kind of optical delusion of his consciousness. This delusion is a kind of prison for us, restricting us to our personal desires and to affection for a few persons nearest us. Our task must be to free ourselves from this prison by widening our circles of compassion to embrace all living creatures and the whole of nature in its beauty."

"It was, of course, a lie what you read about my religious convictions, a lie which is being systematically repeated. I do not believe in a personal God and I have never denied this but have expressed it clearly. If something is in me which can be called religious then it is the unbounded admiration for the structure of the world so far as our science can reveal it. "

"What I see in Nature is a magnificent structure that we can comprehend only very imperfectly, and that must fill a thinking person with a feeling of humility. This is a genuinely religious feeling that has nothing to do with mysticism. "

"Scientific research is based on the idea that everything that takes place is determined by laws of nature, and therefore this holds for the action of people. For this reason, a research scientist will hardly be inclined to believe that events could be influenced by a prayer, i.e. by a wish addressed to a Supernatural Being."

"I cannot believe that God plays dice with the cosmos."

"The more a man is imbued with the ordered regularity of all events the firmer become his conviction that there is no room left by the side of this ordered regularity for causes of a different nature. For him neither the rule of human nor the rule of divine will exists as an independent cause of natural events. To be sure, the doctrine of a personal God interfering with natural events could never be refuted, in the real sense, by science, for this doctrine can always take refuge in those domains in which scientific knowledge has not yet been able to set foot. But I am convinced that such behavior on the part of representatives of religion would not only be unworthy but also fatal. For a doctrine which is to maintain itself not in clear light but only in the dark, will of necessity lose its effect on mankind, with incalculable harm to human progress. In their struggle for the ethical good, teachers of religion must have the stature to give up the doctrine of a personal God, that is, give up that source of fear and hope which in the past placed such vast power in the hands of priests. In their labors they will have to avail themselves of those forces which are capable of cultivating the Good, the True, and the Beautiful in humanity itself. This is, to be sure a more difficult but an incomparably more worthy task.."

"I cannot imagine a God who rewards and punishes the objects of his creation, whose purposes are modeled after our own -- a God, in short, who is but a reflection of human frailty. Neither can I believe that the individual survives the death of his body, although feeble souls harbor such thoughts through fear or ridiculous egotisms. "

"The minority, the ruling class at present, has the schools and press, usually the Church as well, under its thumb. This enables it to organize and sway the emotions of the masses, and make its tool of them."

"I am convinced that some political and social activities and practices of the Catholic organizations are detrimental and even dangerous for the community as a whole, here and everywhere. I mention here only the fight against birth control at a time when overpopulation in various countries has become a serious threat to the health of people and a grave obstacle to any attempt to organize peace on this planet. "

"You will hardly find one among the profounder sort of scientific minds without a religious feeling of his own. But it is different from the religiosity of the naive man. For the latter, God is a being from whose care one hopes to benefit and whose punishment one fears; a sublimation of a feeling similar to that of a child for its father, a being to whom one stands, so to speak, in a personal relation, however deeply it may be tinged with awe.
...
But the scientist is possessed by the sense of universal causation... There is nothing divine about morality; it is a purely human affair. His religious feeling takes the form of a rapturous amazement at the harmony of natural law, which reveals an intelligence of such superiority that, compared with it, all the systematic thinking and acting of human beings is an utterly insignificant reflection... It is beyond question closely akin to that which has possessed the religious geniuses of all ages. "

"I received your letter of June 10th. I have never talked to a Jesuit priest in my life and I am astonished by the audacity to tell such lies about me. From the viewpoint of a Jesuit priest I am, of course, and have always been an atheist. "

"I have repeatedly said that in my opinion the idea of a personal God is a childlike one. You may call me an agnostic, but I do not share the crusading spirit of the professional atheist whose fervor is mostly due to a painful act of liberation from the fetters of religious indoctrination received in youth. I prefer an attitude of humility corresponding to the weakness of our intellectual understanding of nature and of our own being."

"The idea of a personal God is an anthropological concept which I am unable to take seriously."

"The road to this paradise was not as comfortable and alluring as the road to the religious paradise; but it has shown itself reliable, and I have never regretted having chosen it."

"The religious feeling engendered by experiencing the logical comprehensibility of profound interrelations is of a somewhat different sort from the feeling that one usually calls religious. It is more a feeling of awe at the scheme that is manifested in the material universe. It does not lead us to take the step of fashioning a god-like being in our own image-a personage who makes demands of us and who takes an interest in us as individuals. There is in this neither a will nor a goal, nor a must, but only sheer being. For this reason, people of our type see in morality a purely human matter, albeit the most important in the human sphere."

"[My] deep religiosity... found an abrupt ending at the age of twelve, through the reading of popular scientific books."

"It is quite clear to me that the religious paradise of youth, which [I] lost, was a first attempt to free myself from the chains of the 'merely personal,' from an existence which is dominated by wishes, hopes, and primitive feelings."

"The idea of a Being who interferes with the sequence of events in the world is absolutely impossible."

"The religion of the future will be a cosmic religion. The religion which based on experience, which refuses dogmatic. If there's any religion that would cope the scientific needs it will be Buddhism...."

"The man who is thoroughly convinced of the universal operation of the law of causation cannot for a moment entertain the idea of a being who interferes in the course of events... He has no use for the religion of fear and equally little for social or moral religion. "

 
Google
Web www.theinfidels.org
The information on which this page is based has been drawn from research on the Internet. For example, much use has been made of Wikipedia.org, to whom we are greatly indebted. Since the information recording process at Wikipedia is prone to changes in the data, please check at Wikipedia for current information. If you find something on this page to be in error, please contact us.
The Talk Of Lawrence